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ABSTRACT
Bayesian posterior distributions are obtained for the time to the most recent common ancestor (MRCA)

for a nonrecombining segment of DNA (such as the nonpseudoautosomal arm of the Y chromosome or
the mitochondrial genome) for two individuals given that they match at k out of n scored markers. We
argue that the distribution of the time t to the MRCA is the most natural measure of relatedness for such
nonrecombining regions. Both an infinite-alleles (no recurring mutants) and stepwise mutation model
are examined, and these agree well when n is moderate to large and k/n is close to one. As expected, the
infinite alleles model underestimates t relative to the stepwise model. Using a modest number (20) of
microsatellite markers is sufficient to obtain reasonably precise estimates of t for individuals separated by
200 or less generations. Hence, the multilocus haplotypes of two individuals can be used not only to date
very deep ancestry but also rather recent ancestry as well. Finally, our results have forensic implications
in that a complete match at all markers between a suspect and a sample excludes only a modest subset
of the population unless a very large number of markers (.500 microsatellites) are used.

MOLECULAR marker information has proven an common ancestor for a particular pair of individuals of
invaluable tool for assessing the degree of relat- interest, the fine details of the population history and

edness between individuals. To date, most uses of structure do not enter into the analysis, other than very
marker information have been concerned with zero-, weakly through the mean of the assumed prior (as dis-
one- or two-, or deep-generation relatives. By zero-gener- cussed below).
ation, we mean matching/rejecting a forensic sample For unlinked markers, the product rule (multiplying
and a suspect. One- or two-generation assessment in- single-locus genotype probabilities together to obtain
cludes paternity testing and assessing the degree of re- a multilocus genotype probability) applied to highly
latedness between individuals in natural populations. polymorphic loci allows just a few (5–10) unlinked mark-
Typically, these tests have very low power for detect- ers to be quite sufficient for identifying individuals that
ing relatives more distant than sibs and first cousins share a common relative in the last generation (such
(Queller and Goodnight 1989; Lynch and Ritland as parent-offspring or sibs). However, because of recom-
1999). Finally, human geneticists have been very success- bination, unlinked markers have very weak power for
ful in using marker information to assess very deep distinguishing individuals sharing deeper common an-
relationships, on the order of hundreds (or more typi- cestry. While there is a growing body of literature on
cally thousands) of generations. Many of these deep estimating relatedness of two individuals given autoso-
relationship studies have used the haplotypes of nonre- mal marker information (Thompson 1975; Queller
combining chromosomes, such as the nonpseudoau- and Goodnight 1989; Blouin et al. 1996; Ritland
tosomal arm of the Y (e.g., Hammer 1995; Deka et al. 1996; Marshall et al. 1998; Lynch and Ritland 1999),
1996; Skorecki et al. 1997; Bianchi et al. 1998; Kittles it is less clear how to proceed when using markers from
et al. 1998; Wilson and Balding 1998; Thomas et al. nonrecombining DNAs. The product rule does not hold
2000) and mitochrondial DNA (e.g., Torroni et al. 1994; for such regions, as the markers are inherited as a single
Merriwether et al. 1995; Forster et al. 1996; Brown block.
et al. 1998; Stone and Stoneking 1998; Torroni et al. The key to assessing the amount of relatedness using
1998). Here we show how haplotype information can markers on a nonrecombining chromosome is that any
also be used to estimate the age of the common ancestor two individuals (indeed, the entire population) will have
for individuals sharing an intermediate ancestry (tens a most recent common ancestor for that region. This
to hundreds of generations) with reasonable precision. follows from coalescence theory (Hudson 1991; Don-
Since our comparison is restricted to the time to the nelly and Tavaré 1995), which shows that in a demo-

graphically stable population the expected time back
to this most recent common ancestor (MRCA) follows
a geometric distribution with parameter l 5 1/Ne, theAuthor e-mail: jbwalsh@u.arizona.edu
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inverse of the appropriate measure of effective popula- erations is simply (1 2 m)2t, as the probability of no
mutations occurring in the lineage from the ancestortion size [the effective numbers Nm and Nf of males

and females for the Y and mitochondrial (mt)DNAs, to individual one is (1 2 m)t, with a similar probability
from the MRCA to individual two. Hence,respectively]. Using marker information, we can esti-

mate the time t to the MRCA, and it is the distribution
q(t) 5 (1 2 m)2t . e22mt 5 e2t, (2a)of t that provides a natural metric for describing the

relatedness (at least for that region) between two indi- where
viduals. It is important to stress this difference between

t 5 2mt (2b)the MRCA of a region of DNA and the MRCA for two
individuals. Two individuals can easily share an ancestor is the time scaled as total generations of divergence
that is more recent than their MRCA for a particular times the mutation rate. Note that the expression given
DNA region. Hence, estimates of the time to the MRCA by Equation 2a is a lower bound for the probability of
using a particular DNA region provide an upper bound a match, as if back mutations occurred in one (or both)
on the time back to the most recent common ancestor lineages, or, if both lineages experienced parallel muta-
shared by two individuals. tions, we also observe a match. These types of matches

Here we develop a Bayesian estimator for t, obtaining require at least two mutational events, and hence from
the complete posterior distribution for the time t to the the first two terms of the Poisson distribution their prob-
MRCA. We assume that n markers are scored on the ability is bounded above by 1 2 exp(22mt)(1 1 2mt),
nonrecombining chromosome of interest (either the Y i.e., on the order of (2mt)2exp(22mt). Thus if 2mt ¿ 1,
or mtDNA) and that we observe matches in allelic state the effects of such multiple mutations have only a
at k of these. We start by assuming the infinite alleles trivial effect on increasing q(t) over the value assuming
model, where each mutation is assumed to be unique. no mutations (see Figure 4). When a specific value of
We then modify our results by assuming a (symmetric m is required, we generally use m 5 1/500 5 0.20%,
single-step) stepwise mutational model, which is a more motivated by estimates for Y chromosome microsatel-
appropriate descriptor for microsatellite markers. As we lites of 0.28% (Kayser et al. 2000) and 0.21% (Heyer
show, when k/n is close to one and n moderate to large, et al. 1997), which are very similar to the estimated
the two different mutational models give essentially the mutation rates of 0.1 to 0.21% for autosomal microsatel-
same distribution for t. lites (Weber and Wong 1993; Brinkmann et al. 1998).

We note that these mutation rate estimates are generally
done by scoring microsatellites already known to beTHE INFINITE ALLELES MODEL
polymorphic, which introduces a slight ascertainmentSuppose we score the allelic states at n defined mark-
bias. However, since we assume the markers being scoreders on a nonrecombining segment of DNA for two indi-
are also chosen because they are known to be polymor-viduals and we wish to estimate the time back to their
phic (in the population as a whole), then these poten-MRCA (for this segment). We first assume for each
tially biased estimates of mutation rates are appropriatemarker that (at most) only a single mutation has oc-
for our analysis.curred over both lineages leading from the MRCA to

From Equations 1 and 2a, the resulting likelihood forthe two individuals being considered. This is not an
the time t back to the MRCA given that we observe kunreasonable assumption if the individuals match at
out of n matches ismost markers. We refer to this model as the infinite

alleles model, as our development is also exact for the
L(t |n, k) 5

n!
(n 2 k)!k!

e2kt(1 2 e2t)n2k. (3)situation where each mutation is unique so that matches
occur only when the marker locus in both lines has

Setting the derivative of ln(L) equal to zero gives thenot mutated. Finally, we assume that the markers are
maximum-likelihood estimate (MLE) for t̂ 5 2t̂m asexchangeable in the sense that the per-generation muta-

tion rate m is the same for each locus. We relax these
t̂ 5 2t̂m 5 ln1nk2. (4)assumptions below.

Let q(t) be the probability of a match (at any given
single marker) between two individuals with a most re- Hence, the MLE for the time back to the MRCA be-
cent common ancestor t generations ago. The number comes
of matches (k) out of n loci follows a binomial distribu-
tion, with t̂ 5

1
2m

ln1nk2. (5)

Pr(k) 5
n!

(n 2 k)!k!
q(t)k[1 2 q(t)]n2k. (1) Note that the MLE is not especially informative, as the

distribution for t is highly positively skewed, resulting
in a considerable variance and highly asymmetric con-Ignoring matches created by parallel and/or back muta-

tions, the probability that a marker matches after t gen- fidence intervals about the MLE. In particular, note that



899Estimating the Time to the Most Recent Common Ancestor

the MLE is zero for all values of n when there are no
p(t |k) 5

exp[2(2mk 1 l)t](1 2 exp[2(2mt)])n2k

I(m, k, n, l)
,mismatches (k 5 n), which tells us nothing about the

possible restrictions on the maximal time back to the (8b)
MRCA (see Fu and Li 1996 and Donnelly et al. 1996

where the normalizing constant is given byfor a related discussion).

I(m, k, n, l) 5 #
∞

0
exp[2(2mk 1 l)t](1 2 exp[2(2mt)])n2k dt.

BAYESIAN POSTERIOR DISTRIBUTIONS (9)
FOR TIME TO MRCA

The impact of the choice of the hyperparameter l for
While the MLE describes one feature of the distribu- the prior immediately follows from Equation 8a. Pro-

tion of t (the mode), the most complete picture is given vided 2mk À l, alternate choices of l have little effect
by the full posterior distribution of t, which can be on the posterior distribution. Since l 5 N21

e , this re-
obtained by a Bayesian analysis (e.g., Lee 1997). Such arranges to 2Nemk À 1. For a mutation rate of m 5
an analysis proceeds from Bayes’ theorem, with the pos- 1/500, the choice of Ne (and hence l) has essentially
terior distribution p(t |k) being proportional to the no effect on the prior provided Nek À 250, which is a
product of a prior distribution p(t) for t and a likelihood very mild restriction.
L(t |n, k) given the data (k out of n matches), Returning to the posterior distribution, the normaliz-

ing constant is easily computed by expanding the (1 2p(t |k) ~ L(t |n, k)p(t). (6)
e22mt)n2k term, noting that we can express the function

The main objection to a Bayesian analysis raised by being integrated as
non-Bayesians is that the choice of a prior is often very
subjective and, as such, this can greatly bias the poste- exp[2(2mk 1 l)t] 1o

n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)!

exp[2(2mti)]2rior. For the time back to the MRCA, an appropriate
prior naturally follows from standard coalescence the-
ory, as the expected time back to a MRCA under pure 5 o

n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)!

exp[2(2m(k 1 i) 1 l)t]. (10)
drift in an effective population size of Ne follows the
geometric distribution with success parameter N21

e (e.g., Thus
Wilson and Balding 1998). The parameter is 1/Ne in
this case [as opposed to 1/(2Ne) for an autosomal gene] I(m, k, n, l) 5 o

n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)! #

∞

0
exp[2(2m(k 1 i) 1 l)t]dt

because the uniparental inheritance means that both
mtDNA and the Y chromosome are essentially haploid.

5 o
n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)!

1
2m(k 1 i) 1 lAs summarized by Hammer (1995), estimates for Ne

based on the standing level of variation at presumably
5

2n2k (n 2 k)!mn2k

pn2k
i50[l 1 2m(n 2 i)]

. (11a)neutral markers are on the order of 5000 in humans
for both mtDNA and the male-specific region of the Y
chromosome. The last step can be shown either by induction or by

Treating time as continuous, the geometric prior is using a standard symbolic algebra package (such as
equivalent to using an exponential distribution with Mathematica).
hyperparameter l 5 N21

e . Thus, the natural prior for With a flat prior (l 5 0) the normalizing term further
the time to MRCA (in the absence of any marker infor- simplifies to
mation) is to use

I(m, k, n, 0) 5
(n 2 k)!(k 2 1)!

(2m)n!
. (11b)p(t) 5 l exp(2lt), where l 5 N21

e . (7)

Taking the limit as l → 0 gives an (improper) flat prior. Hence, the posterior density becomes
As we will shortly see, the actual value of l used has at
best a trivial effect on the posterior distribution unless

p(t |k, l) 5 1p
n2k
i50[l 1 2m(n 2 i)]
2n2k (n 2 k)!mn2k 2 (1 2 exp[22mt])n2k

exp[t(2mk 1 l)]
.most markers do not match (k ¿n) and the effective

population size is extremely small. Thus the prior is (12)
both well motivated and the choice of the prior hyper-

For zero marker mismatches (k 5 n), the posteriorparameter (l) has very little effect on the final (poste-
is simply an exponential distribution with parameterrior) distribution in most cases.
l 1 2nm,Recalling Equation 3, the resulting posterior distribu-

tion becomes p(t |k 5 n) 5 (l 1 2nm)exp[2(2mn 1 l)t]. (13)
p(t |k) ~ L(t |n, k)p(t) 5 exp[2(2mk 1 l)t] (1 2 exp[2(2mt)])n2k

It immediately follows that the mean (mt) and standard(8a)
deviation (st) for the time to MRCA when there are no
mismatches areso that
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mt 5 st 5
1

l 1 2nm
. 1

2nm
. (14a) mt 5

h(m, k, n, l)
I(m, k, n, l)

(17a)

andLikewise, the cumulative probability distribution for the
time back to the MRCA is just

s2(t) 5
g(m, k, n, l)
I(m, k, n, l)

2 m2
t . (17b)

Pr(t # T) 5 #
T

0
p(t |k 5 n)dt 5 1 2 exp(2(2mn 1 l)T).

(14b) Figures 1–3 plot the posterior distributions corre-
sponding to different numbers of matches (k) for n 5

In particular, the time Ta satisfying Pr(t # Ta) 5 a is 5, 10, 20, 50, and 100 markers under the assumption
given by that m 5 1/500 and there is a flat prior (l 5 0). Provided

that Ne À 250, the results are the same for any other
Ta 5

2ln(1 2 a)
2mn 1 l

. (14c) prior using l 5 1/Ne.
Table 1 summarizes the mean, standard deviation

(SD), and mode (the MLE) for the posterior distribu-Assuming a flat prior (l 5 0), if two individuals are
tions as well as the 2.5, 50, 90, and 97.5% cutoff values.identical at all n marker loci, there is a 90% probability
Note that a 95% credible region for t is given by thethey shared a MRCA in the last 1.15/(mn) generations.
2.5 and 97.5% values. As expected, the distribution ofThe values for 50, 95, and 99% are 0.347, 1.498, and
t is highly skewed, as mode , median , mean. The2.303 (mn)21 generations, respectively.
distribution becomes increasingly skewed to the rightThe posterior distributions with one or more mis-
as the number of mismatches increases, which is re-matches also follow from Equation 12. For example, for
flected in not only an increase in the mean but also inone (k 5 n 2 1) and two (k 5 n 2 2) mismatches, the
the variance. However, note that the mean/SD ratioposteriors are
declines with increasing numbers of mismatches, so that
the coefficient of variation declines as k decreases.p(t |k 5 n 2 1) 5 1(l 1 2nm)(l 1 2m[n 2 1])

2m 2 1 2 exp[2(2mt)]
exp[t(2m(n 2 1) 1 l)] Finally, note that the resolution for t offered by using

n 5 5 markers is very poor, but rather fine precision is
and offered by using 100 markers. While scoring the latter

number of markers may be unrealistic, using 20 markers
p(t |k 5 n 2 2) 5 1(l 1 2nm)(l 1 2m[n 2 1])(l 1 2m[n 2 2])

8m2 2 is both feasible as well as offering reasonable precision.

3
(1 2 exp[2(2mt)])2

exp[t(2m(n 2 2) 1 l)]
.

DIFFERENTIAL MUTATION RATES

The mean and variance for the posterior distribution As our knowledge of the parameters associated with
for any value of k again follow by expanding the (1 2 the mutational process continues to improve, it is likely
e22mt)n2k term. Define that we may find significant differences in the mutation

rates at different markers. Fortunately, it is straightfor-
h(m, k, n, l) 5 #

∞

0
t exp[2(2mk 1 l)t](1 2 exp[22mt])n2k dt ward to modify the likelihood function (Equation 3) to

take this into account. Suppose n markers are examined,(15a)
generating the matching data x1, . . . , xn, where the xiand
are coded as

g(m, k, n, l) 5 #
∞

0
t2 exp[2(2mk 1 l)t](1 2 exp[22mt])n2k dt.

(15b) xk 5




1 match at marker k

0 no match at marker k.Expanding and term-by-term integration gives

The likelihood becomes
h(m, k, n, l) 5 o

n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)!

1
(2m(k 1 i) 1 l)2

L(x1, . . . , xn|t) 5 p
n

k51

qk(t)xk[1 2 qk(t)]12xk, (18a)(16a)

where
g(m, k, n, l) 5 o

n2k

i50

(21)i (n 2 k)!
i!(n 2 k 2 i)!

2
(2m(k 1 i) 1 l)3

.
qk(t) 5 (1 2 mk)2t . e22tmk, (18b)

(16b)

giving
Hence, the mean and variance for the time t to the
MRCA, given k of n marker loci match, a prior with L(x1, . . . , xn|t) 5 exp322to

n

k51

mkxk4p
n

k51

[1 2 e22tmi]12xk.
hyperparameter l, and a per marker mutation rate of
m, are given by (18c)
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Figure 1.—The poste-
rior distributions for the
time to the most recent
common ancestor (MRCA)
between two individuals as-
suming 5 (top) and 10 (bot-
tom) marker loci were
scored and k matches are
observed. A flat prior (l 5
0) and a mutation rate of
m 5 1/500 were assumed.
Numbers indicate number
of marker alleles k that
match between the two indi-
viduals. Values for another
mutation rate m* are given
by scaling the values by m*/
m. Time is measured in gen-
erations.

Using an exponential prior with hyperparameter l, the where m2i is the mean mutation rate for all markers,
posterior is proportional to excluding marker i.

p(t |x)~ exp32t 1l 1 2o
n

k51

mkxk24p
n

k51

[1 2 e22tmi]12xk. (19)
CORRECTING FOR MULTIPLE HITS:
THE STEPWISE MUTATION MODELIn any particular data set, the normalization constant

is easily obtained by expanding the product involving
Microsatellites, given their higher mutation rates

1 2 e22tmi, which generally involves only a few terms
compared to single nucleotide polymorphisms (SNPs),

unless there are a significant number of mismatches.
are clearly the marker of choice for estimating the timeFor the simplest case of no mismatches (k 5 n), the
to MRCA when the individuals are assumed to be atposterior for the time to the MRCA becomes
least modestly related. As microsatellite “alleles” corre-

p(t |no mismatches) 5 (l 1 2nm)exp[2t(l 1 2nm)], spond to different lengths of the repeat unit in the
microsatellite array, the infinite alleles model assumed

(20a)
previously is not appropriate if multiple mutations are

where m is the mean mutation rate across all markers. expected in any given marker. Since mutations change
Equations 14a–c hold with m replaced by the mean muta- the number of repeats (and hence the size) of an array,
tion rate m. Likewise, for one mismatch (say marker i), two (or more) mutations can recover the initial state
the posterior becomes found in the MRCA. Likewise, parallel mutations in

both lineages leading from the MRCA can also lead to[2(n 2 1)m2i 1 l][2(nm) 1 l]
2mi

exp[2t(l 1 2(n 2 1)m2i)][1 2 e22tmi], the two individuals sharing the same allelic state, even
though mutations have occurred. Thus, using an infinite(20b)
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Figure 2.—Posterior distri-
butions for time to MRCA for
20 (top) and 50 (bottom)
markers. Details are as in Fig-
ure 1.

alleles model for microsatellites will tend to underesti- Pr(X(t 1 1) 5 i 2 1|X(t) 5 i) 5 Pr(X(t 1 1) 5 i 1 1|X(t) 5 i) 5
m

2mate the time to the MRCA. To examine the severity
of this underestimation, we consider the divergence, Pr(X(t 1 1) 5 i |X(t) 5 i) 5 1 2 m
assuming a stepwise mutational model (SMM) assuming
equal probabilities of an up (increase array size by one) Pr(|X(t 1 1) 2 X(t)| $ 2|X(t) 5 i) 5 0. (21)
or down (decrease array size by one) move (the symmet-

To apply this model, we need to compute q(t), theric single-step SMM). The roots of the SMM trace from
probability of a match between two lineages sharing aOhta and Kimura’s (1973) model of charge differences
MRCA t generations ago. A little thought shows that forin electrophoretically scored proteins. A number of work-
the one-step model allelic states in two lineages caners have shown this model to be a good fit for microsatel-
only match if an even number (2M) of mutations havelites in both indirect studies examining the distribution
occurred. The appendix shows thatof array sizes in natural populations (Edwards et al.

1992; Shriver et al. 1993; Valdes et al. 1993; Di Rienzo
Pr(match|2M moves) 5

1
22M12M

M 2 5
1

22M

(2M)!
(M!)2

. (22)et al. 1994) and direct studies looking at actual mutations
arising in pedigrees (Brinkmann et al. 1998; Kayser et
al. 2000). In the latter two studies, the vast majority (35 For example, after a total (between both lineages) of

2, 4, 6, 8, and 10 mutations, the probabilities that theout of 37) of new mutations were single step, while the
remaining (2 out of 37) were two step. marker allelic states match are 0.5, 0.375, 0.313, 0.273,

and 0.246 (respectively). Thus, under this model thereDenote the allelic state (array size) in the MRCA as
state 0, and let Xt denote the array size at time t. As is a one in four chance that the two lineages share the

same allelic state even after a total of 10 mutations havebefore we assume a per-generation mutation rate of m.
Under this model, the transition probabilities between occurred.

Since the probability of 2M total mutations along bothstates become
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Figure 3.—Posterior dis-
tributions for time to MRCA
for 100 markers. Details are
as in Figure 1.

lineages assuming t generations back to the MRCA is mutational model, the probability of a match after t 5
2mt generations isgiven by a Poisson distribution with parameter 2tm, we

have the probability of a match conditioned on t as
q(t) 5 exp(2t)I0(t). (25)

p(t) 5 o
∞

M50

Pr(match|2M moves)Pr(2M moves|t) Figure 4 compares the probability of a match as a
function of t for the infinite allele and one-step models.
The match probabilities under both models are rather5 o

∞

M50
1 1
22M

(2M)!
(M!)2 2 1(2mt)2M

(2M)! 2exp(22tm)
similar for t , 0.5 (125 generations with m 5 1/500),
but they diverge rather quickly after that. Note that even

5 exp(22tm) 1 o
∞

M50

(mt)2M

(M!)2 2. (23) after 20t generations (5000 generations with m 5 1/
500), the match probability under the stepwise model

For example, considering only the first 10 mutations, is still nontrivial (0.09), reflecting the very slow decrease
in the probability of a match as the total number of

p(t) 5 exp(22tm)11 1 (tm)2 1
(tm)4

4
1

(tm)6

36
1

(tm)8

576
1

(tm)10

14,4002. mutations increases. By contrast, the corresponding
match probability is essentially zero (2.06 3 1029) under

The general solution to Equation 23 follows by noting the infinite alleles model, as a single mutation causes
that the allelic states to diverge and subsequent back (and/

or parallel) mutations are not allowed.
o
∞

k50

(x)2k

(k!)2
5 I0(2x), (24) As shown in Table 2, both the mean and variance

(measured by the standard deviation) of the distribution
for time to the MRCA are larger under the stepwisewhere I0 denotes the zero-order modified type I Bessel

function (Olver 1964). Hence, under the single-step model than the infinite alleles model. This is certainly
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TABLE 1

Summary of the posterior distribution p(t |k, n), where t is the time back to the most recent common ancestor
(MRCA) for two individuals that match at k of n markers

k MLE Mean SD Median t0.9 t0.025 t0.975

n 5 5 markers
5 0.0 50.0 50.0 34.7 115.1 1.3 184.4
4 55.8 112.5 80.0 94.2 219.2 13.6 315.0
3 127.7 195.8 115.5 173.3 480.0 39.6 480.0
2 229.0 320.8 170.2 289.7 546.8 83.4 736.6

n 5 10 markers
10 0.0 25.0 25.0 17.3 57.5 0.6 92.2

9 26.3 52.8 37.4 44.3 102.7 6.4 147.2
8 55.8 84.0 48.7 74.8 149.3 17.3 203.0
7 89.2 119.7 60.4 109.7 200.6 32.4 264.2
6 127.7 161.4 73.4 150.2 259.5 51.8 334.5
5 173.3 211.4 88.8 198.7 329.8 76.1 419.0
4 229.1 273.9 108.6 258.9 418.4 106.8 526.9

n 5 20 markers
20 0.0 12.5 12.5 8.7 28.8 0.3 46.1
19 12.8 25.7 18.1 21.5 49.9 3.1 71.5
18 26.3 39.5 22.9 35.2 70.2 8.1 95.3
17 40.6 54.3 27.2 49.8 90.7 14.7 119.1
16 55.8 69.9 31.3 65.2 111.8 22.6 143.5
15 71.9 86.5 35.5 81.7 134.0 31.6 168.9
14 89.2 104.4 39.7 99.4 157.5 41.8 195.7
13 107.7 123.6 44.1 118.4 182.5 53.1 224.2
12 127.7 144.5 48.8 138.9 209.5 65.5 255.0
11 149.5 167.2 53.8 161.3 238.8 79.3 288.6
10 173.3 192.1 59.4 185.9 271.0 94.7 325.5

n 5 50 markers
50 0.0 5.0 5.0 3.5 11.4 0.1 18.5
49 5.1 10.1 7.1 8.5 19.7 1.2 28.2
48 10.2 15.3 8.8 13.7 27.2 3.2 36.9
47 15.5 20.6 10.3 18.9 34.5 5.6 45.2
46 20.8 26.0 11.7 24.3 41.7 8.5 53.4
45 26.3 31.6 12.9 29.9 48.9 11.6 61.5
44 32.0 37.3 14.1 35.5 56.1 15.0 69.6
43 37.7 43.1 15.3 41.3 63.4 18.6 77.8
42 43.6 49.1 16.4 47.3 70.9 22.4 86.0
41 49.6 55.2 17.5 53.3 78.4 26.4 94.4
40 55.8 61.4 18.6 59.6 86.1 30.6 102.8
39 62.1 67.8 19.6 65.9 93.9 35.0 111.4
38 68.6 74.4 20.7 72.5 101.9 39.5 120.2
37 75.3 81.2 21.8 79.2 110.0 44.3 129.2
36 82.1 88.1 22.9 86.1 118.4 49.2 138.3
35 89.2 95.2 24.0 93.2 127.0 54.3 147.7
34 96.4 102.6 25.1 100.6 135.7 59.6 157.3
33 103.9 110.2 26.2 108.1 144.8 65.1 167.2
32 111.6 118.0 27.3 115.9 154.1 70.8 177.4
31 119.5 126.1 28.5 123.9 163.7 76.7 187.9
30 127.7 134.4 29.7 132.2 173.6 82.8 198.7

(continued)

expected, as the effect of the stepwise mutational model for the distribution of t under the stepwise model com-
pared to the same statistic under the infinite allelesis to allow for a match following two (or more) muta-

tions, while a match is assumed to never recover follow- model. When the number of markers is large (20 or
greater) and the number of mismatches is small, theseing a mutation under the infinite alleles model. Table

2 gives the ratios of the means and standard deviations ratios are close to one. The ratio of standard deviations
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TABLE 1

(Continued)

k MLE Mean SD Median t0.9 t0.025 t0.975

n 5 100 markers
100 0.0 2.5 2.5 1.7 5.8 0.1 9.2

99 2.5 5.0 3.6 4.2 9.8 0.6 14.0
98 5.1 7.6 4.4 6.8 13.5 1.6 18.3
97 7.6 10.2 5.1 9.3 17.0 2.8 22.3
96 10.2 12.8 5.7 11.9 20.4 4.1 26.1
95 12.8 15.4 6.3 14.5 23.8 5.6 29.9
94 15.5 18.0 6.8 17.2 27.2 7.3 33.7
93 18.1 20.7 7.3 19.9 30.5 8.9 37.4
92 20.8 23.5 7.8 22.6 33.9 10.7 41.1
91 23.6 26.2 8.3 25.3 37.2 12.6 44.8
90 26.3 29.0 8.7 28.1 40.6 14.5 48.5
89 29.1 31.8 9.2 30.9 44.0 16.4 52.2
88 32.0 34.6 9.6 33.7 47.4 18.4 55.9
87 34.8 37.5 10.0 36.6 50.8 20.5 59.6
86 37.7 40.4 10.4 39.5 54.3 22.6 63.3
85 40.6 43.4 10.9 42.5 57.7 27.8 67.1
84 43.6 46.3 11.2 45.4 61.2 27.0 70.9
83 46.6 49.3 11.6 48.4 64.7 29.2 74.7
82 49.6 52.4 12.0 51.5 68.3 31.5 78.5
81 52.7 55.5 12.4 54.6 71.9 33.9 82.4
80 55.8 58.6 12.8 57.7 75.5 36.3 86.3
79 58.9 61.8 12.2 60.8 79.2 38.7 90.2
78 62.1 65.0 12.6 64.0 82.9 41.2 94.2
77 65.3 68.2 14.0 67.3 86.6 43.7 98.2
76 68.6 71.5 14.3 70.5 90.4 46.2 102.3
75 71.9 74.8 14.7 73.9 94.2 48.8 106.4
74 75.3 78.2 15.1 77.2 98.1 51.5 110.5
73 78.7 81.6 15.5 80.7 102.0 54.2 114.7
72 82.1 85.1 15.9 84.1 106.0 56.9 119.0
71 85.6 88.6 16.3 87.6 110.0 59.7 123.3
70 89.2 92.2 16.7 91.2 114.1 62.5 127.6
69 92.8 108.9 22.2 107.0 138.1 71.0 157.6
68 96.4 113.7 23.0 111.7 143.9 74.5 164.2
67 100.1 118.7 23.8 116.6 150.0 78.0 171.0
66 103.9 123.7 24.6 121.6 156.2 81.7 178.0
65 107.7 129.0 25.5 126.8 162.6 85.4 185.2
64 111.6 134.4 26.5 132 169.2 89.3 192.7
63 115.5 139.9 27.4 137.5 176.0 93.2 200.4
62 119.5 145.6 28.4 143.1 183.0 97.3 208.4
61 123.6 151.6 29.5 148.9 190.3 101.5 216.8
60 127.7 157.7 30.6 154.9 197.9 105.8 225.5

A flat (improper) prior was used (l 5 0) and a mutation rate of m 5 1/500 was assumed. Results for any
other mutation rate m* follow by multiplying the appropriate table entry by m*/m 5 500 · m*. MLE, maximum-
likelihood estimate (which is also the mode of the posterior under a flat prior); SD, standard deviation; ta

satisfies P(t # ta | k, n) 5 a. The median corresponds to t0.5, while a 95% credible region is given by (t0.025,
t0.975).

is always larger than the means ratio, reflecting the under the stepwise vs. the infinite alleles model decrease
toward 1 as the number n of markers scored increases.longer tail (relative to that for the infinite alleles model)

generated under the stepwise model. As the number of For example, for 80% observed matches, assuming a
flat prior (l 5 0), the mean ratios are 4.8, 1.34, 1.2,mismatches increases, the mean and SD ratios increase,

reflecting increasingly larger probabilities for t under 1.1, and 1.1 (for n 5 5, 10, 20, 50, and 100 markers).
Likewise, the ratios of standard deviations are 34.2, 2.0,the stepwise relative to the infinite alleles model.

Also note from Table 2 that for the same fraction of 1.3, 1.2, and 1.2. The reason for this can be seen by
considering the case where we observe what appears toobserved matches (say 4/5, 8/10, 16/20, 40/50, and

80/100), the ratios of the means and standard errors be a complete match at all n markers. In this case, there
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arises because the effect of increasing l is to shorten
the distributions of times to MRCA in the prior (decreas-
ing Ne decreases the coalescent times), which in turn
down-weights matches under the stepwise model from
individuals with assumed very long times to the MRCA.

Our analysis under the SMM model considers mark-
ers only as showing a match or mismatch, ignoring
any additional information on the differences between
marker alleles when a mismatch has occurred. Over
short time scales (on the order of 1/2m , 1) we are
likely not losing much information, as most markers
will likely have at most one mutation and hence scoring
a match vs. no match is sufficient. Over longer time
scales, we are clearly losing information. In such cases,
a logical extension of our model would be replacing
the probability of a match with the probability that the
two microsatellite alleles in the individuals being com-
pared differ by r repeats. This is accomplished as follows.
Consider the probability of an even number (2k) of
differences between microsatellite array sizes. Again, a
little thought shows that this can occur only with an
even number of total mutations (2M). With a total of
2M mutations, the probability that the array sizes differ
by 2k is the probability that the number of up (1)
mutations is either M 1 k or M 2 k (by symmetry, these
two probabilities are the same under the SMM). Thus,
the probability of a difference (in absolute value) of
D 5 2k given 2M total mutations isFigure 4.—The probability of a match in allelic state be-

tween two lineages with a MRCA t generations ago under the
infinite alleles and stepwise models. Top, generations 0 to t 5 Pr(D 5 2k|2M) 5 21122

2M

1 2M
M 2 k2 for k # M. (26)

2mt 5 1, which corresponds to 250 generations for m 5 1/
500. Bottom, up through 20t (5000 generations under this

Since M follows a Poisson distribution with mean 2mt,value of m).
the probability of a difference of 2k given the time t to
the MRCA is

is some small chance that two (or more) mutations have
occurred in one (or more) markers. However, if indeed Pr(D 5 2k |t) 5 o

∞

M5k
Pr(D 5 2k |2M)Pr(2M|t)

a total of two mutations have occurred across both lin-
eages, the probability that both occurred in the same

5 o
∞

M5k
21122

2M

1 2M
M 2 k2e22mt(2mt)2M

(2M)!marker is just 1/n (assuming the same mutation rate
across markers). Hence, as the number of markers in-
creases, the probability that a multiple mutation is 5 2e22mt o

∞

M5k

(mt)2M

(M 2 k)!(M 1 k)!masked decreases due to scoring changes over more
loci. 5 2e22mtI2k(2mt) (27a)

The final observation from Table 2 is that, unlike for
where Is denotes the s-order modified type I Bessel func-the infinite alleles model, the choice of the hyperpara-
tion (Olver 1964).meter l for the prior can significantly affect the poste-

Using the same logic, for a difference of 2k 1 1 anrior distribution. This is true when the number of mark-
odd number (2M 1 1) of total mutations are required,ers is very small and/or the fraction of mismatches is
and following the same steps leading to Equation 27anontrivial. The most extreme difference between the
givestwo assumed mutational models is seen under a flat

prior (l 5 0). As the value of l increases (corresponding Pr(D 5 2k 1 1|t) 5 2e22mt I2k11(2mt). (27b)
to a decrease in the assumed effective population size

Hence, the probability that the array sizes for two allelesas l 5 1/Ne), the ratios of the means and standard
differ by j after t 5 2mt generations isdeviations under the two models become increasingly

similar. Almost all of this difference is due to significant q( j)(t) 5 2exp(2t)Ij(t) for j $ 1. (28)
decreases in the mean and variance under the distribu-
tion of t under the stepwise model as l increases. This Figure 5 plots the probability for 0, 1, 2, 3, and $4
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TABLE 2

The increase in the mean and standard deviation (SD) for the time to the MRCA under the
stepwise mutational model as compared to the infinite alleles model (Table 1)

l 5 0 l 5 1/20,000 l 5 1/500

k Mean SD Mean SD Mean SD

n 5 5 markers
5 1.65 6.56 1.59 4.09 1.30 1.62
4 4.77 34.26 3.34 14.88 1.51 2.17
3 25.05 108.19 9.91 38.56 1.75 2.67
2 64.45 148.81 20.63 57.99 1.86 2.77

n 5 10 markers
10 1.14 1.25 1.14 1.24 1.12 1.21

9 1.21 1.47 1.21 1.46 1.18 1.34
8 1.34 2.01 1.34 1.96 1.25 1.56
7 1.60 3.79 1.59 3.36 1.36 1.88
6 2.28 10.31 2.17 7.21 1.51 2.32
5 4.56 31.32 3.65 16.34 1.68 2.80
4 12.89 80.04 7.15 32.93 1.85 3.18

n 5 20 markers
20 1.06 1.09 1.06 1.09 1.05 1.09
19 1.08 1.13 1.08 1.13 1.07 1.12
18 1.10 1.19 1.10 1.19 1.09 1.17
17 1.13 1.25 1.13 1.25 1.12 1.23
16 1.16 1.33 1.16 1.33 1.14 1.29
15 1.20 1.44 1.20 1.44 1.18 1.38
14 1.25 1.59 1.25 1.58 1.22 1.49
13 1.31 1.81 1.31 1.80 1.26 1.63
12 1.40 2.16 1.40 2.15 1.32 1.82
11 1.53 2.76 1.53 2.72 1.39 2.06
10 1.73 3.83 1.72 3.71 1.49 2.37

(continued)

differences in array size as a function of t. F. Rousset As an example of applying Equation 31, consider hap-
(personal communication) kindly pointed out that Equa- lotypes 1 and 3 from Thomas et al.’s (2000) study on
tion 28 can be found buried in Wehrhahn (1975), who the Lemba and the Cohen (Y chromosome) modal hap-
obtained this result using the method of generating lotype. Six microsatellite markers were scored and, of
functions (also see Li 1976; Wilson and Balding 1998). these, both alleles match at four markers, while one

The likelihood function follows from the multinomial marker differs by one repeat and another by two repeats.
distribution. If a total of n markers are scored, and ni In this case, Equation 31 becomes
denotes the number of markers differing in size by i

p(t|4, 1, 1) ~ e2(l12m6)t [I0(2mt)]4 · I1(2mt) · I2(2mt).(with the largest difference being k), then

Table 3 compares the estimated parameters under this
L(t |n0, . . . , nk) 5

n!
n0!n1! . . . nk!

p
k

j50

[q( j)(2mt)]nj. (29) model with those estimated using the infinite alleles
and SMM matching models. Figure 6 plots the resulting

Again using an exponential prior, the resulting poste- posterior distributions. We use m 5 0.245% (the average
rior distribution is proportional to of the Kayser et al. 2000 and Heyer et al. 1997 estimates)

and a prior of l 5 1/5000 (from Hammer’s 1995 esti-
p(t|n0, . . . , nk) ~ p

k

j50

[q( j)(2mt)]nj e2lt 5 2n2n0 e2(l12mn)t p
k

j50

[Ij(2mt)]nj. mate of Ne for the Y) for these results.
While Equation 31 provides the foundation for a full(30)

Bayesian analysis, we caution that its usefulness depends
The full distribution is recovered by numerical integra- on accurately capturing the mutation model for the
tion to normalize the posterior, viz., markers in question. While the stepwise mutation model

seems a reasonable fit, the fine details are still unclear.
For example, there are suggestions that mutation ratep(t|n0, . . . , nk) 5

e2(l12mn)t pk
j50[Ij(2mt)]nj

#
∞

0
e2(l12mn)t pk

j50[Ij(2mt)]nj dt
. (31)

may increase with array size (Brinkmann et al. 1998;
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TABLE 2

(Continued)

l 5 0 l 5 1/500 l 5 0 l 5 1/500

k Mean SD Mean SD k Mean SD Mean SD

n 5 50 markers
50 1.02 1.03 1.02 1.03 39 1.11 1.22 1.10 1.21
49 1.03 1.04 1.03 1.04 38 1.12 1.25 1.11 1.24
48 1.03 1.06 1.03 1.06 37 1.13 1.27 1.12 1.26
47 1.04 1.07 1.04 1.07 36 1.14 1.30 1.13 1.29
46 1.05 1.09 1.05 1.08 35 1.15 1.34 1.15 1.32
45 1.05 1.10 1.05 1.10 34 1.17 1.38 1.16 1.36
44 1.06 1.12 1.06 1.11 33 1.18 1.42 1.17 1.39
43 1.07 1.13 1.07 1.13 32 1.20 1.46 1.90 1.44
42 1.08 1.15 1.08 1.15 31 1.22 1.52 1.21 1.48
41 1.09 1.17 1.08 1.17 30 1.24 1.58 1.22 1.53
40 1.10 1.20 1.09 1.19

n 5 100 markers
100 1.01 1.02 1.01 1.02 79 1.08 1.17 1.08 1.17

99 1.01 1.02 1.01 1.02 78 1.09 1.18 1.09 1.18
98 1.02 1.03 1.02 1.03 77 1.09 1.19 1.09 1.19
97 1.02 1.03 1.02 1.03 76 1.10 1.21 1.10 1.20
96 1.02 1.04 1.02 1.04 75 1.10 1.22 1.10 1.21
95 1.02 1.04 1.02 1.04 74 1.11 1.23 1.11 1.23
94 1.03 1.05 1.03 1.05 73 1.11 1.24 1.11 1.24
93 1.03 1.06 1.03 1.06 72 1.12 1.26 1.12 1.25
92 1.03 1.06 1.03 1.06 71 1.12 1.27 1.12 1.26
91 1.04 1.07 1.04 1.07 70 1.13 1.29 1.13 1.28
90 1.04 1.08 1.04 1.08 69 1.14 1.30 1.13 1.29
89 1.04 1.09 1.04 1.08 68 1.14 1.32 1.14 1.31
88 1.05 1.09 1.05 1.09 67 1.15 1.33 1.15 1.33
87 1.05 1.10 1.05 1.10 66 1.16 1.35 1.15 1.34
86 1.05 1.11 1.05 1.11 65 1.16 1.37 1.16 1.36
85 1.06 1.12 1.06 1.12 64 1.17 1.39 1.17 1.38
84 1.06 1.13 1.06 1.12 63 1.18 1.41 1.17 1.40
83 1.07 1.13 1.07 1.13 62 1.19 1.43 1.18 1.42
82 1.07 1.14 1.07 1.14 61 1.19 1.45 1.19 1.44
81 1.07 1.15 1.07 1.15 60 1.2 1.48 1.20 1.46
80 1.08 1.16 1.08 1.16

When the number of markers and/or matches is low, the value of l 5 1/Ne chosen for the prior distribution
can have a nontrivial effect on the results under the stepwise model. For example, with two of five matches,
the mean time under the stepwise model is over 64 times that of the infinite alleles model (assuming a flat
prior, l 5 0, on both), but only a twofold (1.86) difference is seen when the prior assumes a hyperparameter
of l 5 1/500 (corresponding to Ne 5 500).

Fu and Chakraborty 1998) but also observations that incorrect mutation model as is removed by accounting
for multiple hits. One approach would be to use Fu andsuggest this is not the case (Valdes et al. 1993). There

are also observations suggesting a bias toward increased Chakraborty’s (1998) minimum chi-square approach
for estimating the generalized stepwise mutation modelarray size (Kayser et al. 2000; Fu and Chakraborty

1998), and although most mutational steps change array and compare the minimal (best) fitting parameters with
those for the symmetric single-step model that we havesize by one, mutations of two or more steps are seen

(Brinkmann et al. 1998; Kayser et al. 2000). Finally, assumed.
there may be multiple molecular processes operating
at microsatellites, such as a majority of small changes

DISCUSSION
against a background of rare major changes (Di Rienzo
et al. 1994) or independent deletions (Walsh 1987). Both the Y chromosome and mtDNA have been suc-

cessfully used for assessing deep ancestry, while un-Until these details are sorted out, the risk run by using
a model to correct for multiple mutations is that at linked autosomal markers have proven much more valu-

able for determining very recent ancestry. Here weleast as much bias could be introduced by assuming an
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Figure 6.—Posterior distributions for t, the estimated time
Figure 5.—Probabilities that two microsatellite alleles that to MRCA, between Y chromosome haplotypes 1 and 3 of

have been separated for a total of t 5 2mt generations differ Thomas et al. (2000). IAM, infinite alleles model; SMM0, step-
in array size by 0, 1, 2, 3, and .3 repeats (computed using wise mutational model only scoring matches vs. no match;
Equation 28). The single-step symmetric stepwise mutational SMME, stepwise mutation model scoring number of differ-
model is assumed. ences between array sizes. See the Table 3 legend for further

details.

examine the effectiveness of using multilocus haplo-
alleles (each mutation is unique, with a match implyingtypes from a region of nonrecombining DNA (such as
no mutation at that marker since the MRCA) and thethe majority of Y chromosome or mtDNA) to estimate
SMM (which allows for matches created by several paral-the time t to the MRCA of two individuals for that region.
lel mutations).We argue that, to assess the relatedness of individuals

Our results show that it is possible to use Y or mtDNAon the basis of their haplotypes in a region of nonrecom-
marker information to provide reasonable estimates forbining DNA, the time to the MRCA is the natural re-
t when individuals share a MRCA of intermediate ageplacement for probability calculations based on the
(tens to hundreds of generations when m 5 1023), pro-product rule used for unlinked markers.
vided a sufficient number of markers are scored (TableWe assume n prechosen markers are examined and
1, Figures 1–3). Estimates using only 5 markers haveare (initially) coded as either matching (agreeing in
distributions that are highly skewed for large t values,allelic state) or not matching. Using a Bayesian ap-
especially when the possibility of back mutations regen-proach, the resulting posterior distribution for t is a
erating a match is taken into account (i.e., the SMMfunction of n, the number of matches k, the per-marker
model). As the number of markers increases, the widthmutation rate m, and the hyperparameter l 5 1/Ne
of the credible intervals around an estimate of t de-(the reciprocal of the effective population size) of the
creases. While 10 markers give a reasonable interval, 20assumed prior distribution of t (the assumed distribu-
markers seems a more workable tradeoff between costtion for the time to the MRCA for two random individu-
and precision. Our results also suggest that the forensicals in the absence of any marker information). We exam-
use of either the Y or mtDNA is rather limited. They canined two rather different mutation models—infinite
be used for exclusion, but make only weak probability
statements about a sample and a suspect when there is
a complete match. Using Equation 14c, a completeTABLE 3
match at 10 out of 10 markers between a sample and a

Estimated time to MRCA between haplotypes 1 and 3
suspect implies only that the individual generating theof Thomas et al. (2000)
sample and the suspect have a 90% chance of sharing
a MRCA no more than 58 generations ago (assumingModel Mean Median 2.5% 97.5%
a typical microsatellite mutation rate of m 5 1/500).

IAM 124.8 110.7 25.4 303.8 With a complete match, the number of markers that
SMM0 394.4 193.5 33.2 2129.1 need to be scored to have a 90% probability that theSMME 352.5 235.8 53.4 1380.5

sample and suspect have a MRCA no more than 1 gener-
Six microsatellite markers were scored, four of which were ation ago is z580, an order of magnitude more than

exact matches, one differed by one, and one by two. The the number of currently known Y-linked markers (M.
parameter values used were l 5 1/5000, m 5 0.0025. IAM, Hammer, personal communication). A 50% probabilityinfinite alleles model; SMM0, stepwise mutational model only

that the MRCA does not exceed 1 generation requiresscoring matches vs. no match; SMME, stepwise mutation
model scoring number of differences between array sizes. roughly 340 microsatellite markers.
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We obtained the posterior distributions for t given alleles model and the appropriate mutation rates. Equa-
tion 18a allows the method to handle mixed (STRs andthe marker data by using a Bayesian analysis, which

requires a prior distribution for t. From standard popu- SNPs) marker data by using the appropriate expression
for qk(t), the probability of a match for marker k at timelation-genetics theory, t follows a geometric distribution

with success parameter 1/Ne (as the Y and mtDNA be- t. For SNPs, the infinite alleles model is used, qk(t) 5
exp(22mkt), while microsatellites use Equation 25, qk(t) 5have as haploids). Hence, the functional form of the

prior is well motivated, while its exact shape is deter- exp(22mkt)I0(2mkt), which corrects for multiple hits un-
der the stepwise mutation model (I0 denoting the zero-mined by the hyperparameter l 5 1/Ne used for any

particular prior. For the infinite alleles model, the actual order modified type I Bessel function; Olver 1964). In
either case, mk is the mutation rate for marker locus k.value of l had essentially no effect unless we used a very

small value for Ne (,200) and/or there were a very More generally, if microsatellite comparisons are coded
by differences in size (as opposed to match/no match),significant number of mismatches (k/n ¿1). Thus, we

used a flat prior (l 5 0, corresponding to an infinite Equation 28 gives the probability that two individuals
differ by j steps at the kth microsatellite as q( j)

k (t) 5effective population size) for the general results tabu-
lated, although the equations given cover arbitrary val- 2exp(22mkt)Ij(2mkt), where Ij is the jth-order modified

type I Bessel function.ues of l $ 0. Conversely, under the stepwise model, the
value of l often had a significant effect on the posterior, Our approach is easily modified to estimate the time

between an individual and a particular (known or in-especially when the number of markers n is small and
the number of matches is modest or poor (k/n ¿1). ferred) ancestral haplotype. When comparing an indi-

vidual’s haplotype against a fixed standard, we are fol-In such cases, the use of a flat prior gave the largest
difference in the posteriors for the two mutational mod- lowing only one branch from the MRCA, so that q(t) 5

(1 2 m)t z exp(2mt), as opposed to q(t) z exp(22mt)els. As the value of l is increased (corresponding to
decreasing Ne), the posteriors under the two different when looking at mutations over both branches. Hence,

we simply replace the mutation rate m by m/2, and allmodels become increasingly similar (Table 2). This oc-
curs because, as we decrease Ne, we make the initial of our previous results apply.

Estimation of the time to the MRCA for a sample ofassumption that individuals with long times to the
MRCA become increasingly unlikely. It is these individu- individuals (as opposed to our simpler setting of just

two individuals) has been examined by Fu (1996) andals that still have a modest probability of showing a
match under the stepwise model, greatly inflating the Tavaré et al. (1997), under the assumption of an infinite

sites model (Watterson 1975). These analyses assumeestimated times to the MRCA relative to the infinite
alleles estimate. In cases where there was a recent popu- a Poisson likelihood for the number of segregating sites,

while we assumed a binomial likelihood for number oflation expansion (or contraction) or a selective sweep,
the distribution of times to MRCA may deviate from a segregating sites under the assumption that the n sites

to be scored in the two individuals were fixed in advance.geometric distribution. However, even in such cases, we
expect there to be little dependence on the prior except Given that the rough figure is one common polymor-

phism every 10 kb for the human Y (M. Hammer, per-in cases where changes in l under a geometric prior
have a significant effect on the posterior. sonal communication), focusing on specific sites known

to be polymorphic in the population as a whole (asOne potential issue of concern is whether our results
are somehow biased by scoring only markers known to opposed to sequencing large regions) is not an unrea-

sonable approach. When n is large and m small, the twobe polymorphic in the human population as a whole
(but not necessarily in the particular pair of individuals different likelihoods for estimating t should give very
being contrasted). When the goal is to estimate the similar results.
coalescent time for an entire population, using markers As we tried to stress in several places, the major caveat
known (in advance) to be polymorphic in the popula- to this (or any other) approach for estimating the time
tion of interest creates an ascertainment bias that needs t to MRCA is our uncertainty about both the mutational
to be corrected (e.g., Nielsen 2000). In our analysis, m process and rates. The Bayesian framework allows us to
is the mutation rate for microsatellites conditional on incorporate these uncertainties; for example, if p(m) is
their being polymorphic. However, since the estimates some assumed prior for the mutation rates, then the
of microsatellite mutation rates used are also ascer- marginal posterior (after integrating out m) can be used
tained by scoring microsatellites known to be polymor- to estimate t,
phic, we have corrected for this effect. When consider-

p(t |l, marker information) ~ eL(t |marker information)p(l)p(m)dm.ing random microsatellites, the mutation rate m in our
analysis is replaced by cm, where c . 1 is an ascertain-

However, practical application requires a reasonablement correction that can be specified only by knowing
prior for m. An even more serious problem is the exacthow the polymorphic markers were ascertained.
form the stepwise mutational model used for microsatel-While we have implicitly framed much of our discus-
lite loci. Using an inappropriate model can potentiallysion in terms of microsatellites [simple tandem repeats

(STRs)], SNP data can be included by using the infinite introduce more bias than it corrects.
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APPENDIXtellite loci from human Y chromosome, as revealed by direct
observation in father/son pairs. Am. J. Hum. Genet. 66: 1580–

Suppose a total of S mutations have occurred over the1588.
Kittles, R. A., M. Perola, L. Peltonen, A. W. Bergen, R. A. Aragon two lineages, with n mutations in lineage 1 and S 2 n

et al., 1998 Dual origins of Finns revealed by Y chromosome in lineage 2, where n is a random variable. Let X1 and
haplotype variation. Am. J. Hum. Genet. 62: 1171–1179.

X2 denote the changes in array size from the commonLee, P. M., 1997 Bayesian Statistics: An Introduction, Ed. 2. Arnold,
London. ancestor. What is the distribution for d 5 X1 2 X2 (the
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difference in array size between the two lineages) condi- X1 2 X2 5 o
n

i51

Zi 2 o
S2n

i51

Zn1i 5 o
n

i51

Zi 1 o
S2n

i51

Zn1i 5 o
S

i51

Zi.
tioned on the total number of mutations S in both
lineages? Jay Taylor (Department of Ecology and Evolu-

Hence the probability that the difference in array sizetionary Biology, University of Arizona) suggested the
is d given a total of S mutations over both lineages isfollowing approach, which is considerably more elegant
simply the probability that the random walk given bythan a more brute force method I initially used. Define
the symmetric single-step model starting from state zerothe random variable Zi as the change (61) in array size
is in state d after S steps.generated by the ith mutation. Under the symmetric

Using Taylor’s result, the probability that two arrayssingle-step model, Pr(Zi 5 11) 5 Pr(Zi 5 21) 5 1⁄2.
are the same size given that a total of 2M mutationsFurther,
have occurred between them equals the probability of

X1 5 o
n

i51

Zi and X2 5 o
S2n

i51

Zn1i. M up moves and M down moves, or

Noting that, in distribution, Zi 5 2Zi, it immediately Pr(match|2M mutations) 5
(2M)!
(M!)2

1
22M

.
follows that, in distribution,


